CuO/TiO2 nanocomposite photocatalyst for efficient MO degradation

Author:

A’srai A. I. M., ,Razali M. H.,Amin K. A. M.,Osman U. M., , ,

Abstract

Many studies have been performed to degrade the methyl orange (MO) dye by introducing titanium dioxide (TiO2) semiconductor material as photocatalyst because TiO2 having unique characterizations such as low toxicity and good chemical stability. However, its photocatalytic reaction is limited by low surface area as well as the rapid recombination of photogenerated electron-hole pairs and only has ability to absorb a small fraction (<5%) of indoor light. Therefore, in this study, copper oxide/titanium dioxide (CuO/TiO2) nanocomposite photocatalyst was proposed and synthesized using wet precipitation method. The synthesised photocatalyst was characterized by using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), Scanning electron microscopy (SEM), Energy dispersive x-ray (EDX), Thermogravimetric analysis (TGA), Nitrogen gas adsorption-desorption Brunauer, Emmett, teller (BET) and UV-Visible Spectroscopy. Spectra obtained from FTIR have proved that there are existence of O-H stretching, O-H bending and metal-oxygen bond that correlates to the functional groups of the samples. As affirmed by XRD analysis, crystalline anatase TiO2 phase was obtained for pure TiO2 samples. Anatase TiO2 phase is remained, and the additional peaks belong to copper oxide was observed for CuO/TiO2 nanocomposite photocatalyst sample suggesting that copper oxide was successfully loaded onto TiO2. The morphological study from SEM shows the presence of irregular particles of copper oxide and agglomerated TiO2 bulk particles. The CuO/TiO2 nanocomposite photocatalyst's presence of copper, titanium, and oxygen was confirmed by EDX analysis. TGA results show that pure CuO, TiO2 and CuO/TiO2 nanocomposite photocatalyst were thermally stable as only 6.7, 6.8 and 7.9 % weight loss were observed, due to the water removal. The specific surface area of CuO, TiO2 and CuO/TiO2 composite photocatalysts were found to be 20.50 m2 /g, 15.26 m2 /g and 37.12 m2 /g, respectively. They also exhibit type IV isotherms which is indicated the presence of mesopores in sample. This mesoporous structure provided high pore size within 2 to 50 nm in the sample. The photocatalytic activity study demonstrates that the 1.0 g CuO/TiO2 with the ratio of (0.5:1) could degraded 90.46 % of 10 ppm Methyl Orange (MO) dye at pH 6, which is better than pure TiO2, pure CuO and other CuO/TiO2 nanocomposites after 3 hours reaction. This is attributed to the presence of CuO at optimum amount which can increased the surface area, promoted electron-hole separation, and decelerated the charge carrier recombination. At 1 ppm MO, 100 % degradation was observed using similar photocatalyst and condition. However, the degradation rate of Methylene Blue (MB) and phenol was slightly reduced to almost 95.47 % and 80.65 % after 180 minutes reaction, due to their chemical structure and stability.

Publisher

Virtual Company of Physics

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science,Biomedical Engineering,Atomic and Molecular Physics, and Optics,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3