Comparison the effect of co-precipitation and sol-gel techniques on the structural and magnetic attributes of ZnO and Zn(1-x)Fe0.05CoxO nanoparticles for attaining room temperature ferromagnetism (RTFM)

Author:

Kanwal S., ,Khan M. T.,Zaman A.,Tirth V.,Algahtani A.,Al-Mughanam T., , , , ,

Abstract

In current study, ZnO and Fe/Co co-doped ZnO (Zn1-x Fe0.05 Cox O where x = 0, 0.005) nanoparticles were prepared by using two different methodologies: sol gel method and coprecipitation method. The structural properties were determined by X-Ray diffraction technique which verifies the hexagonal wurtzite structure of prepared nanoparticles. Crystallite size varies from 18.68-37.43 nm for the samples synthesized by co-precipitation method and it varies from 19.97-38.45 nm for sol-gel method. Fourier transform infrared transmittance spectra were used to investigate the type of functional groups present in all the prepared nanoparticles. The UV-Visible absorption spectroscopy was employed to investigate the optical properties of ZnO and doping of Fe/Co in ZnO semiconducting host. The energy band gap varies from 3.03 - 3.68 eV for the samples synthesized by coprecipitation method and for sol-gel method, it ranges from 3.13 - 3.86 eV, by increasing dopant concentration. Vibrating sample magnetometer was used to inquire the magnetic behavior of synthesized nanoparticles which shows the weak ferromagnetic behavior of the doped nanoparticles prepared by both the techniques. Samples prepared by co-precipitation method showed higher values of saturation magnetization and coercivity as compared to the samples prepared by the sol-gel method. In comparison of two synthesis techniques, a slight change was observed in the particle size, energy band gap and magnetization values. The improved optical and magnetic behavior favors the co-precipitation method rather than sol gel method for obtaining room temperature ferromagnetism for practical applications in spintronics field.

Publisher

Virtual Company of Physics

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science,Biomedical Engineering,Atomic and Molecular Physics, and Optics,Structural Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3