EFFECTIVE ATOMIC NUMBERS AND ELECTRON DENSITIES OF GEL DOSIMETERS FOR He, B, C, AND O HIGHLY CHARGED PARTICLES INTERACTION IN THE ENERGY RANGE 10 keV–100 MeV

Author:

ABDELRAHIM M. S., ,HAROUN KH. M.,ALFAKI A. H.,BUSH H. S.,ALDAGHRI O.,EISA M. H., , , , ,

Abstract

The radiological properties of different gel dosimeter formulations including six normoxic and four hypoxic polymeric gels, BRESAGE, PREAGE®, Fricke gel dosimeters, and water were investigated using SRIM code. The effective atomic number Zeff and electron density (Ne) for heavily charged particle interaction were calculated and performed for Helium (He), Boron (B), Carbon (C), and Oxygen (O) ion interactions in the energy range from 10 keV to 100 MeV. Variations of effective atomic number (Zeff) and electron density (Ne) with the kinetic energy of ions, (He, B, C, and O), were observed over the whole energy range for all studied materials. Variations of Zeff for He ion are up to 21%, 25%, and 20% for hypoxic and normoxic gels, Fricke gel, and PRESAGE gels, respectively. For other ions, variation is up to 34% for hypoxic and normoxic gels as well as Fricke gel, and 32% for PRESAGE gels. It is found that the maximum values of Zeff have been observed in intermediate energies between 1-10 MeV for all dosimeters, except for PRESAGE and PRESAGE® , where maximum values were observed in the relatively low energy range 10 – 100 keV. For effective atomic number relative to water, polymeric gels and Fricke gel showed better water equivalence with differences <7%, while PRESAGE and PRESAGE® showed high differences up to 17.5%, 22%, 21%, and 25% for He, B, C, and O ion, respectively. Gels found to be most relative to water are (Fricke, HEAG, and PAG), Fricke and HEAG), (Fricke and HEAG), and (Fricke, HEAG, and BANG-1) for He, B, C, and O ion interactions, respectively. Data reported here gives essential information about the interaction of different types of charged particles with different materials and could be useful in the energy range specified.

Publisher

Virtual Company of Physics

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science,Biomedical Engineering,Atomic and Molecular Physics, and Optics,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3