RGD peptide functionalized graphene oxide: a bioactive surface for cell-material interactions

Author:

Zhao C. H., ,Zhang X. P.,Zhang L., ,

Abstract

Recently, functionalized graphene-based nanomaterials have gained tremendous attention in biomedical field owing to their biocompatibility, surface functionalizability and their unique mechanical, electronic, and optical properties. Herein, we report a facile one step modification of graphene oxide by RGD peptide, which is known to improve the tissue– material contact by highly specific binding to cellular membrane receptors known as integrins. A detailed structural and morphological characterization of the obtained RGD functionalized graphene oxide (GO-RGD) was performed. The synthesized bioactive composite was used to prepare RGD-GO films by a vacuum filtration method. Additionally, mouse osteoblastic cell (MC3T3-E1) functions including cell attachment, adhesion, proliferation, and differentiation were investigated on GO-RGD films. The results indicated that MC3T3-E1 cell functions were significantly enhanced on GO-RGD films comparing with GO films without functionalization. This study not only demonstrates a facile approach to functionalize graphene oxide with bioactive peptides, but also provides a potential biomaterial for bone repair by improving osteoblastic cell functions.

Publisher

Virtual Company of Physics

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science,Biomedical Engineering,Atomic and Molecular Physics, and Optics,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3