Effect of the laser CO2 properties on the superconducting nanocomposite Bi2Sr2-xYxCa2Cu3-yNiyO10+d at high temperatures

Author:

Ahmad N. A.,Ali A. K. D.,Mahdi S. H.

Abstract

Researchers have been looking into ways to cut down on energy waste in transportation and manufacturing in response to the poor value of energy production as a basic tenet of renewable energy producing facilities. Heat loss due to the electrical resistance of materials is the primary source of energy waste in electrical systems. There are a plethora of studies aimed at lowering material resistance, and the best approach involves the use of superconductor's materials. The number of possible strategies for improving the superconductor's electrical and structural characteristics is overwhelming. Using XRD analysis, a scanning electron microscope, electron dispersive spectroscopy, and the fourprobe technique, the authors of this paper report on their findings regarding the effect electrical and structural characteristics for laser-irradiated materials of the Bi2Sr2- xYxCa2Cu3-yNiyO10+δ compound over a period of 60 seconds. X-ray diffraction studies demonstrated that the crystal structure of the material did not change before and after laser irradiation; both the unirradiated and laser-irradiated samples were found to have an orthorhombic crystal structure. Using the four-probe approach, we looked at how irradiation affected the critical temperature of the specimens we produced. According to the findings of the tests, all of the specimens changed after being subjected to the laser light, with the critical temperature rising by 139 K, 147 K, and 145 K, respectively

Publisher

Virtual Company of Physics

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science,Biomedical Engineering,Atomic and Molecular Physics, and Optics,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3