Novel statistically optimized one pot synthesis of inherently photoluminescent and electroactive graphene oxide nanosheets as 1, 4 dioxane sensor

Author:

Renjithkumar R., ,Iffath B.,Devasena T., ,

Abstract

1, 4 dioxane predominantly found in industrial effluents and air force plants, is of great concern worldwide due to its toxic and carcinogenic nature. Currently, there are limited research on 1,4 dioxane sensors and most of these sensors are intricate metal oxide composites. This study reports the fabrication of novel inherently electroactive graphene oxide nanosheets derived from a natural polyphenolic compound, and the process parameters were statistically optimized using TOPSIS based Taguchi L9 orthogonal array. The proposed novel sensor was employed in the linear range (0.1µM to 3µM) that conforms with the WHO guideline (0.56 µM) for dioxane in water, showed good sensitivity (117 nAnM-1 cm-2 ), detection limit (20.51 nM) and quantification limit (62.16 nM) which is far superior compared to the reported literature on dioxane sensing systems.

Publisher

Virtual Company of Physics

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science,Biomedical Engineering,Atomic and Molecular Physics, and Optics,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3