Investigation of CNT and Zn doped Cu-SSZ-13 zeolite catalyst for ammonia selective catalytic reduction activity of NOx

Author:

Sunil Kumar M., ,Alphin M. S.,

Abstract

Hybrid Cu-SSZ-13 zeolite catalyst are prepared and analyzed for NH3-SCR activity with different topologies in the present investigation. Cu-SSZ-13 was synthesized by ionexchange method, and hybrid Cu-SSZ-13 was synthesized by wet-impregnation method with three different molar ratios between Znx-CNTy as 1:5, 1:10, & 1:15 and maintained as 1:5 mass ratio between Znx-CNTy/Cu-SSZ-13 hybrid zeolite catalysts. The catalytic activity measured at a temperature window of 100˚C to 550˚C concludes hybrid Zn1- CNT10/Cu-SSZ-13 catalyst exhibits high NH3-SCR performance (100%) at a temperature of 180˚C to 475˚C and by anti-sulfur activity, it exhibits 80% NOx at 300˚C for 8hrs in the presence of SO2 gas in feed aid that addition of Zn species and CNTs influence Cu-SSZ13 in NH3-SCR activity finding them to be a better catalyst for NOx reduction.

Publisher

Virtual Company of Physics

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science,Biomedical Engineering,Atomic and Molecular Physics, and Optics,Structural Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3