Tuning structural and wettability properties of glass using ellipsoidal TiO2 nanoparticles

Author:

Machinin A. M., ,Awang A.,Pien C. F.,Ghoshal S. K., , ,

Abstract

Self-cleaning glasses became demanding for various advanced applications due to their manifold advantages. In this view, some tellurite glasses containing TiO2 nanoparticles with varying concentrations were synthesized using the standard melt-quenching. These glasses were transparent with a reddish appearance. The HRTEM images of the glasses showed the presence of ellipsoidal TiO2 NPs with sizes ranging from 9−22 nm and 5−9 nm along the major and minor axis, respectively. The lattice fringe pattern of the selected TiO2 NPs confirmed their anatase structure with a lattice spacing of 0.36 nm. The observed reduction in the water contact angle from 67.5° to 43.0° of the glasses indicated their hydrophilic nature. The high work of adhesion (0.101− 0.126 N.m-1 ) of the glasses revealed the strong interfacial attractive force between water and glass. It was demonstrated that by adjusting the TiO2 NPs contents the hydrophilic traits of the glassed can be tailored, indicating the suitability for self-cleaning applications.

Publisher

Virtual Company of Physics

Subject

Surfaces, Coatings and Films,Physics and Astronomy (miscellaneous),Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3