Tellurite-filled hexa-circular-shaped PCF with highly nonlinearity, birefringent and near-zero dispersion profile for optical communications

Author:

Hasan Sohag Md. S.,Kabir K. H.

Abstract

This manuscript focuses on devising a Tellurite-filled circular-timbered PCF that shows considerably highly birefringent and nonlinear characteristics. The impacts of numerous design parameters, such as birefringence (Br), nonlinear coefficients (NLC), confinement loss (CL), effective mode area (EMA), dispersion, numerical aperture (NA), etc. of the fiber are extensively inspected employing the commercially accessible and simulation- friendly COMSOL Software. Besides, the pertinent modal properties of the modeled fiber are rigorously characterized by operating the full-vector finite element method (FEM) with a perfectly matched layer (PML) boundary condition. The simulated findings affirm that the developed fiber exemplifies an ultra-high Br and NLC of 0.0924 and 18900 W-1Km-1 consecutively, at the operational wavelength of 1.55μm. Notably, the offered PCF also reveals a relatively lower CL, a negative-sloping dispersion and a higher EMA at the same wavelength. The pragmatic execution of the modeled fiber is expected to be doable applying the existing fabrication approaches and it can be applied in miscellaneous identical optical domains, namely polarization retention in long-distance communications, optical switching, sensor and laser layout, supercontinuum generation for frequency metrology and so forth.

Publisher

Virtual Company of Physics

Subject

Surfaces, Coatings and Films,Physics and Astronomy (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dual Side Polished PCF Based Surface Plasmonic Refractive Index Sensor for Detection of Water Pollution;2022 4th International Conference on Sustainable Technologies for Industry 4.0 (STI);2022-12-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3