Effect of ratio gold nanoparticles on the properties and efficiency photovoltaic of thin films of amorphous tungsten trioxide

Author:

Mustafa M. H., ,Shihab A. A.,

Abstract

At a substrate temperature of 320 o C, a chemical spray pyrolysis approach was applied. to create tungsten oxide thin films on glass substrates with varying Au nanoparticle doping concentrations (0, 0.04 and 0.08 M) that have a thickness of roughly 250 nm. Investigated were the structural and optical characteristics. The films were amorphous to the pure films at the substrate temperature (320 °C), according to X-ray diffraction and remain so even after adding GNPs, because the WO3 structure is amorphous in all samples, whereas the cubic structure of the gold nanoparticles. The morphology of the films was examined using atomic force microscopy (AFM), which showed a decrease in the grain size of the films doped with gold compared to the thin films before the doping process. a UV-Vis spectrophotometer was used to examine the membranes' optical characteristics between the wavelengths of (300-1000) nm. was the optical energy gap of the films (3.23) eV for tungsten oxide film and decreased after adding nanoscale gold to (3.04, 2.95) eV for films doped with different proportions of Au NPs (0.04, 0.08 M), respectively. Hall testing confirms that with 8 (mM) Gold (Au) doping, WO3 material of the n type was obtained with a maximum carrier mobility of 219.92(cm2 /Vs) and conductivity of 6.52 (Ω.cm)-1 . The I-V characteristics of the photovoltaic formed under illumination were determined by measuring the incident power density (100 mW/cm2 ) at varied Au doping levels.

Publisher

Virtual Company of Physics

Subject

Surfaces, Coatings and Films,Physics and Astronomy (miscellaneous),Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3