Structural, optical and magnetic characteristics of iron doped zinc oxide thin films

Author:

Mahmoud A. Z., ,Ibrahim E. M. M.,Galal Lamiaa,Shaaban E. R.,Yousef E. S., , , ,

Abstract

Zn1-xFexO films with x = 0, 5, 10, 15 and 20 at.% were prepared under high vacuum by the electron beam gun evaporation. The impact of Fe doping concentration on the films' structural, optical and magnetic characteristics has been taken into account. The patterns of XRD for all films at various Fe concentrations showed wurtzite-type structures. The results show that the size of nano-films reduces from 24 nm (0%) to 11 nm (0.20%) with elevating Fe content, which is owing to the difference between the ionic radii of Zn and Fe. Peaks associated with the elements to be seen were visible in the XPS spectra of undoped and 10% Fe-doped ZnO nanoparticles produced by the precipitation process: zinc (Zn), iron (Fe), and oxygen (O). The optical constants (n, k) of the Zn1-xFexO films were obtained by the SE measurements by an ellipsometric model, allowing for the verification of the Fe3+ ions in Fe-doped ZnO. With the addition of Fe, the energy band gap decreased from 3.44 eV to 3.28 eV. M-H measurements revealed room-temperature ferromagnetism in Fe-doped ZnO thin film. As the Fe concentration rises, the magnetization increases until it reaches a concentration of 15%, at which point it starts to decrease. This decrease in magnetization was attributable to the spinel phase, which was seen in the XRD spectra. These findings imply that Fe-doped ZnO is a highly suggested material for the creation of spintronic and optoelectronic devices.

Publisher

Virtual Company of Physics

Subject

Surfaces, Coatings and Films,Physics and Astronomy (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3