Designing and studying of PVA/Fe2O3/Se as new ovonic material for possible storage application

Author:

Mohammed K. A., ,Salem K. H.,Jawaad M. F.,Alkhafaji M. A.,Zabibah R. S., , , ,

Abstract

This study presents the synthesis of a novel ovonic nanomaterial by the chemical route approach, involving the combination of three distinct materials: polyvinyl alcohol (PVA), iron oxide (Fe2O3), and selenium (Se) nanoparticles. The produced material underwent evaluation using various analytical techniques, including Xray diffraction (XRD), energydispersive Xray spectroscopy (EDS), scaning electron microscope (SEM), and UV-Visible spectrophotometer. The focus of the work revolved around a unique hybrid structure consisting of selenium nanoparticles that were embedded within a polyvinyl alcohol and iron(III) oxide. The examination of micro structure information yielded findings that support the notion that Se nanoparticles have an impact on the structural properties of PVA/Fe2O3. (XRD) and (EDS) examines provided confirmation of the formation of a novel composite structure. The produced composites had notable absorption peaks at a wavelength of 530 nm for PVA-Fe2O3-CdZnS. These composites exhibited a progressive transition towards absorption in higher wavelength areas. The composite material that has been suggested for potential utilization in forthcoming energy storage applications.

Publisher

Virtual Company of Physics

Subject

Surfaces, Coatings and Films,Physics and Astronomy (miscellaneous),Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3