Numerical simulation of highly photovoltaic efficiency of InGaN based solar cells with ZnO as window layer

Author:

Annab N.,Baghdadli T.,Mamoun S.,Merad A. E.

Abstract

InxGa1-xN, as one promising nitride semiconductor alloys for modern optoelectronic devices, has received extensive attention in recent years. However, due to its powerful modulation of energy band gap from UV to visible spectra (0.7-3.4 eV) and its interesting absorption coefficient can range from 103 to 105 cm-1 , depending on the material properties, it can be considered as a potential candidate for high efficiency solar cells. The actual efficiency reached is (30.38%) [1]. In order to enhance more the efficiency, we perform in this work, a device modeling and numerical simulation using SCAPS software. We optimize the photovoltaic characteristics of a solar cell based on InxGa1-xN. This cell is mainly composed of indium gallium nitride semiconductors for both buffer and active layer p-InxGa1-xN/i-InxGa1-xN and the window layer contains of n-ZnO. The optimization of the various optoelectronic parameters allows improving performance of the solar cell, in addition to absorbing as much solar radiation as possible. The main photovoltaic parameters of the analog device: open circuit voltage, short circuit current density, fill factor and conversion efficiency (η) were compared and analyzed. We have reached the conversion efficiency of 26.11% for a thickness of 1450 nm and an n-doping of 3×1018 cm-3 in the active layer (In0.3Ga0.7N). This study investigates the great potential of InGaN solar cells and can be used for the design and manufacture of high efficiency III-nitride based solar cells.

Publisher

Virtual Company of Physics

Subject

Surfaces, Coatings and Films,Physics and Astronomy (miscellaneous),Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3