Development of chitosan base graphene oxide/ WO3 hybrid composite for supercapacitor application

Author:

Thennarasu V., ,Prabakaran A.,

Abstract

The use of non-renewable energy has brought to serious environmental problems for the planet. The amount of greenhouse gases rose immediately as the combustion of fossil fuels increased. As a result, sea levels are steadily rising and the Earth is becoming warmer. Research on renewable energy sources has been done extensively to provide a solution. However, in order to maximise energy utilisation, renewable energy needs an energy storage system, such as a super capacitor. For the development of sustainable supercapacitors for future energy systems, electrode material is a prospective target. The formation of desired electrode material is essential in order to fabricate supercapacitor with higher power density and longer life cycle than secondary batteries in electronic application. In this study, chitosan (CS) was isolated from crab shells, and graphene oxide (GO) was synthesized using a modified Hummers' process, followed by a chemical reduction approach. Based on the results, the synthesized GO exhibited higher capacitance as compared to GO that synthesized through single-step modified Hummers’ method. Continuous efforts have been exerted to further improve the electrochemical performance of GO/WO3 nanocomposite by incorporating an optimum content of WO3. In this manner, comprehensive investigations on different parameters, such as loadings of ammonium paratungstate (APT), hydrothermal temperature and reaction time were conducted in order to study the formation of GO/WO3 nanocomposite. WO3 and GO/WO3 nanocomposite were successfully synthesized through a simple hydrothermal method.

Publisher

Virtual Company of Physics

Subject

Surfaces, Coatings and Films,Physics and Astronomy (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3