Biogenic synthesis of zinc oxide nanoparticles using leaves extract of Camellia sinensis for photocatalytic and biological applications

Author:

Sattar R., ,Rasool M. A.,Qadir R.,Siddique A. B.,Irfan M. I.,Saba I.,Akhtar M. T.,Rehman M. M. ur,Mustaqeem M., , , , , , , ,

Abstract

Nanoparticles have attracted considerable attention of researchers due to their diverse properties in the fields of catalysis, energy devices, wound healing and drug delivery systems . Synthesis of nanoparticles using plants and microbial extract is a green approach due to easy handling, rapidity and cost-effectiveness. This article reported a simple and green method of zinc oxide nanoparticles (ZnO-NPs) synthesis using Camellia sinensis leaves extract as reducing agent. State-of-the-art techniques were utilized for the characterization and measure the potential applications of ZnO-NPs. FTIR and SEM analysis were performed to confirm the nature of bonding and morphology of NPs. XRD analysis confirmed the hexagonal wurtzite structure and crystallite size (34 nm) of ZnONPs. EDX analysis was performed to check the purity of NPs. Energy band gap of valence band and conduction band was found 3.278 eV using UV/Visible spectrophotometry. Purified ZnO-NPs were utilized to determine the photocatalytic potential for degradation of hazardous dye (methylene blue) at λmax of 668 nm under irradiation of sunlight. The results indicated ∼92% photodecomposition of dye after 110 min of sunlight irradiation. Moreover, ZnO-NPs also revealed the antibacterial potential, having better inhibition power against gram-negative bacterial strains.

Publisher

Virtual Company of Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3