Growth and characterization of bimetallic (Ni,Co) sulfide thin films deposited by spray pyrolysis

Author:

Gahtar A., ,Zaouche C.,Ammari A.,Dahbi L., , ,

Abstract

In this work, the bimetallic (Ni,Co) sulfide film of 852.213 nm thickness was successfully deposited using the spray pyrolysis technique at 300 °C. The compound was prepared with a mixture of nickel acetate (C4H6O4Ni. 4H2O), cobalt chloride (CoCl2. 6H2O), and thiourea (CS(NH2)2) as precursors for Ni, Co, and S, respectively. The temperature and sedimentation time were 300 °C and 10 min, respectively; the film was then, characterized without any thermal post-treatment. The structural, morphological, optical and electrical analysis were carried out to investigate the different properties of the material. The X-ray diffraction analysis confirmed the presence of NiCo2S4 according to the JCPDS Card # 98- 004-0019, with an average crystallite size of 34.45 nm. The optical analysis revealed the metallic behavior of the film with an average transmittance of 3.41% in the visible region and a direct optical band gap of 2.15 eV, as well as a high absorption coefficient of α ≈ 104 - 105 cm-1 ). The elementary composition analysis (EDS) confirmed the presence of Ni, Co and S elements in the film. Morphological analysis revealed a homogeneous, compact, crack-free appearance and a granular surface in all studied areas. On the other hand, the film shows a high electrical conductivity of about 1.42×105 S/cm at room temperature. The obtained results show that the bimetallic (Ni, Co) sulfide prepared in this study exhibits a good crystallinity, dense morphology, good stoichiometric ratio and high conductivity. Therefore, it is a potential candidate for application in supercapacitors as electrode material.

Publisher

Virtual Company of Physics

Subject

General Physics and Astronomy,General Chemistry,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3