Digital Twin Based Machining Condition Optimization for CNC Machining Center

Author:

Sim Beomsik,Lee Wonkyun

Abstract

Optimization of machining conditions is important in determining productivity and machining quality. This study proposes a method for optimizing the machining conditions of a machine tool using a digital twin of a commercial machine tool comprising physical models of a controller, feed drive systems, and cutting load. The digital twin is constructed and evaluated based on machining experiments, and a genetic algorithm is adopted to determine the machining conditions to minimize the machining time and production cost. The optimal feed rate and spindle speed are obtained for each line of the part program when the cutting force is limited. The machining results demonstrate the effectiveness of the proposed method. After optimization for maximizing the machining speed, the machining time decreased by 16.9%. Similarly, after optimization for minimizing the production cost, the production cost reduced by 36.4%.

Funder

Korea Institute of Machinery and Materials

Korea Institute for Advancement of Technology

Ministry of Trade, Industry and Energy

Publisher

International Journal of Precision Engineering and Manufacturing-Smart Technology of Korean Society for Precision Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3