Developing a Framework for the Deployment of Predictive Analytics to Improve Postgraduate Student Throughputs at One Comprehensive South African University

Author:

Kariyana Israel1ORCID,Sinkala Winter2ORCID,Gqoli Neliswa3ORCID

Affiliation:

1. Department of Continuing Professional Teacher Development, Faculty of Education, Walter Sisulu University, Mthatha Campus, South Africa

2. Department of Mathematics, Science and Computing, Walter Sisulu University, Mthatha Campus, South Africa

3. Department of Adult, Foundation Phase & Education Foundations Education, Walter Sisulu University, Mthatha Campus, South Africa.

Abstract

There is limited understanding of the opportunities available to universities through efficient deployment of predictive analytics. This study sought to develop a framework for the successful deployment of predictive analytics at one university to ensure high-quality postgraduate throughput rates. The study adopted a systematic literature review to elicit the opportunities presented by utilising predictive analytics in decision-making to promote postgraduate student throughput rates. It emerged that literature abounds on the manner big data analytics can be used to benefit universities and students. The study argued that the traditional, non-statistical approach which has long been used to address the unsatisfactory postgraduate throughput rates has failed to yield the required outcomes. It also noted the existing effort and support mechanisms to address postgraduate student retention and throughput rates which are necessary but not sufficient. A critical recommendation is that the proffered model should not be construed as a ‘perfect and single solution’ to capsize the poor postgraduate throughput rates at the university as different limitations exist. The study concluded that there is a clear call for the need to turn the current approach to the management and promotion of postgraduate student success. As such, the opportunities available are for those institutions that are committed to improving and magnifying their future practice by making meaning of the existing large data resources at their disposal. Keywords: Framework, Higher Education Institutions, Predictive Analytics, Throughput Rates

Publisher

Noyam Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3