DIFFERENCE BETWEEN MUSCLE ACTIVITIES DURING JUMPING MOTION IN DESCENT AND ASCENT PHASES ON A TRAMPOLINE

Author:

MATSUSHIMA MASAHARU

Abstract

Trampoline bounces are performed on a bed of a jumping surface that is stretched over the trampoline apparatus. The jumping motion is divided into a descent phase, i.e., from the landing to the maximum depth, and an ascent phase, from the maximum depth to the takeoff. Most studies on muscle activity during jumping have investigated muscle activity during the same phase between groups or between landing and release; however, no studies have investigated muscle activity between phases. Therefore, this study aimed to investigate muscle activity during the descent and ascent phases and obtain basic data on the jumping motion. For the trials, participants were instructed to perform 15 consecutive jumps on the trampoline bed from a standing still position, as high as possible, straight and straight up in the center of the trampoline bed. The muscle activities of the rectus femoris, tibialis anterior, and lateral gastrocnemius revealed significant increases and larger effect sizes in the descent phase than in the ascent phase (p < 0.01). The muscle activities of the sternocleidomastoid, trapezius, and biceps femoris demonstrated significant increases and medium effect sizes in the descent phase in contrast to the ascent phase (p < 0.01). Pushing down the bed by the muscular activity of the lower extremities is most pursued in the descent phase. Then, participants maintain a straight vertical posture for the body to receive the rebound force from the maximum depth of the bed. This suggests that the sternocleidomastoid and trapezius muscles were significantly active in controlling the head position. A high jump is achieved by pushing the bed down for a deep descent and maintaining a straight posture at the maximum depth. The elastic bed is similar to an Open Kinetic Chain in the descent phase because the load incrementally increases, and to a Closed Kinetic Chain in the ascent phase because the load begins at the maximum depth of the bed. Separating the elements of the jumping motion required in the descent and ascent phases is important in athletic training

Publisher

University of Ljubljana

Reference42 articles.

1. -2024 Code Of Points Trampoline Gymnastics. (2021). Federation Internationale De Gymnastique.

2. https://www.gymnastics.sport/publicdir/rules/files/en_TRA%20CoP%202022-2024.pdf

3. Aldo O. Perotto and Hugh Thomas. (2005). Anatomical guide for the electromyographer : the limbs and trunk. Saunders Elsevier, United States.

4. Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155–159.

5. https://doi.org/10.1037//0033-2909.112.1.155

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3