THE EFFECT OF AN 8-WEEK ANAEROBIC GYMNASTICS TRAINING ON BDNF, VEGF, AND SOME PHYSIOLOGICAL CHARACTERISTICS IN CHILDREN
-
Published:2020-10-01
Issue:3
Volume:12
Page:381-394
-
ISSN:1855-7171
-
Container-title:Science of Gymnastics Journal
-
language:
-
Short-container-title:SGJ
Author:
Afroundeh Roghayyeh,Saleh Vahid,Siahkouhian Marefat,Asadi Asadollah
Abstract
The purpose of the present study was to observe changes in levels of brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), resting metabolic rate (RMR) and maximum oxygen consumption (VO2max) in the gymnast children after an anaerobic gymnastics training program. Thirty beginner gymnasts aged 8-12 years old were randomly assigned to control (n = 15) and experimental (n = 15) groups. The anaerobic gymnastics training was conducted for 8 weeks, 3 times per a week. Each session lasted 45 minutes: 10 min warm-up, 30 min core exercise, and 5 min cool down. The anthropometric and body composition of subjects were measured and growth factors were measured by using human BDNF and VEGF PicoKine™ ELISA Kit and analysis was performed using sandwich enzyme-linked immunosorbent assay (Morland et al.) before and after the intervention, and VO2max, maximum heart rate and RMR were measured using a gas analyzer. At the baseline there were not any significant differences between both groups (p>0.05). But in the post-test, a significant difference was observed for BDNF(p=0.02) and VEGF(p=0.018) values between the two groups. Within-group there was a decrease in the value of the maximum heart rate indicator (P<0.05) and VO2max and BDNF increased significantly after an intervention (P<0.05). In conclusion, the results of the present study suggest that anaerobic gymnastic training increases the level of salivary BDNF and VEGF in children. These types of exercises may also improve cardiorespiratory fitness in children.
Publisher
University of Ljubljana
Subject
Education,Orthopedics and Sports Medicine,Physical Therapy, Sports Therapy and Rehabilitation
Reference41 articles.
1. Almeida, Marcos B, & Araújo, Claudio Gil S. (2003). Effects of aerobic training on heart rate. Revista Brasileira de Medicina do Esporte, 9(2), 113-120. 2. Álvarez, Zaida, Castaño, Oscar, Castells, Alba A, Mateos-Timoneda, Miguel A, Planell, Josep A, Engel, Elisabeth, & Alcántara, Soledad. (2014). Neurogenesis and vascularization of the damaged brain using a lactate-releasing biomimetic scaffold. Biomaterials, 35(17), 4769-4781. 3. Chiappin, Silvia, Antonelli, Giorgia, Gatti, Rosalba, & Elio, F. (2007). Saliva specimen: a new laboratory tool for diagnostic and basic investigation. Clinica chimica acta, 383(1-2), 30-40. 4. Consolazio, C Frank. (1963). Physiological measurements of metabolic functions in man. The Computation of Metabolic Balances, 313-317. 5. Čular, Dražen, Zagatto, Alessandro Moura, Milić, Mirjana, Besilja, Tea, Sellami, Maha, & Padulo, Johnny. (2018). Validity and reliability of the 30-s continuous jump for anaerobic power and capacity assessment in combat sport. Frontiers in physiology, 9, 543.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|