Formulation and Characterization of Poly (Acrylic Acid)- Co-Chitosan Nanoparticles as pH-Thermo-Responsive System to Control Delivery

Author:

Derbali Abir,Bouzid Djallel,Boyron Olivier

Abstract

The present study aims to develop a pH thermosensitive nanocarriers as a drug delivery system to better controll drug release. Nanoparticles was developed by the combination of smart polymers, chitosan and poly(acrylic acid) were chosen as biodegradable vectors to encapsulate and transport the drug. The used method was based on the polymerization of acrylic acid using reticulated chitosan as a template. Analysis of particle size, Zeta potential, and size distribution revealed that most of the resulting nanoparticles had an average diameter less than 100nm, with a high Zeta potentiel about -29.7 mV and a narrow size distribution. In addition, the developed system showed an encapsulation efficiency around 97%. In vitro release test was achieved using different buffer solutions with pH equal to 1.2, 3.6, 4.2, 4.8, 6.8 and 7.4. The release profiles showed that nanoparticles provide drug protection at different pH values. They responded at pH = 3.6 and provided sustained controlled release of up to 62.62% over 8 hours. The results reveal that the prepared nanoparticles can be used as drug delivery carriers. They can improve therapeutic efficiency of the drugs used in the treatment of inflamed tissues where the pH is around 3.6 as in the Crohn disease.

Publisher

Set Publishers

Subject

Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3