Pulsatile MHD Flow of Two Immiscible Nanofluid through a Porous Channel with Slip Effects

Author:

MEDISETTY Padma DeviORCID,Suripeddi S. SrinivasORCID,Kuppalapalle K. Vajravelu,Badeti B. Satyanarayana

Abstract

The present study is carried out to investigate the effects of shape factor nanoparticles on the oscillatory MHD flow of a nanofluid in two immiscible liquids in a horizontal porous channel with velocity and thermal slip on the walls. Thermal radiation, Joule heating, viscous and Darcy dissipations have been accounted for in the model. We have considered and as nanoparticles, in the lower region (Region-I) and upper region (Region-II) respectively, with water as a base fluid. The effective ratio of thermal conductivity of the nanofluid is evaluated using the Maxwell-Garnetts model. Graphical behavior of velocity, temperature, and rate of heat transfer distributions have been depicted for the cases of slip and no-slip effects. This study has been made to understand the impact of different nanoparticle shape factors on temperature and heat transfer rate. For various parameters, values of shear stress distribution at the walls and the mass flux are shown in tabular form. Our study asserts that with the increase of the strength of the magnetic field, the velocity of the liquid falls and enhances the temperature of the liquid. The influence of different combinations of nanoparticles, on the flow variables, have also been discussed. In order to validate the analytical results, the numerical evaluation of the closed-form results, for the velocity distribution, has been compared with those of the numerical method, by using the NDSolve command in MATHEMATICA, and a good agreement is observed.

Publisher

University of Zielona Góra, Poland

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3