Thermal efficiency analysis of the rotary kiln based on the wear of the lining

Author:

Zeng Donghu,Shcherbina V. Yu.,Li Jiaxiu

Abstract

The thickness of the lining is reduced from 230 mm to 80 mm due to long-term wear, resulting in low thermal efficiency of the rotary kiln. The thermal resistance, which is positively correlated with the thickness of the lining, is one of the most important factors determining the thermal efficiency of the rotary kiln. The thermal efficiency of the rotary kiln can be improved by introducing insulation material with lower thermal conductivity into the lining. The average heat flux is used as the thermal efficiency evaluation index of the 4×60 m rotary kiln under no-load conditions in this work. A numerical experiment was conducted for the temperature and heat flux of the inner surface of the lining, as well as the temperature of the outer surface of the shell during the wear of the lining. There are two cases considered, one with and one without insulation materials in lining. According to the analysis, when the lining in the high temperature zone of the rotary kiln wears to 80 mm, the average heat flux of the inner surface of the lining increases by 105.03%. However, after the addition of insulation material, the average heat flux on the inner surface of the lining increases by 40.38% (wears to 80 mm). Compared to the thermal efficiency of the rotary kiln without heat insulation material, the average heat flux of the inner surface of the lining is reduced by 36.36% (230 mm), and it is reduced by 99.01% (wears to 80 mm). A significant advantage of this solution is that it can increase the thermal efficiency of the rotary kiln, improve the insulation performance of the lining, reduce heat loss to the environment through the shell, and the results obtained can be used for the latest equipment design and existing equipment improvements.

Publisher

University of Zielona Góra, Poland

Subject

Fluid Flow and Transfer Processes,Transportation,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3