Influence of Al2O3 nanoparticle mass concentration and aerosol formation parameters on tool vibration during turning of Ti6Al4V titanium alloy

Author:

Dylewicz Weronika,Szczotkarz NataliaORCID,Maruda Radosław,Gupta M.K.ORCID

Abstract

Machining difficult-to-cut materials involves challenging machining conditions, including higher temperatures in the cutting zone, cutting forces and friction. Another important phenomenon is vibration, which is undesirable when manufacturing high quality workpieces. One way to reduce vibration in the cutting zone is to use cooling methods. Due to its environmentally friendly nature, the minimum quantity lubrication (MQL) method has already been widely used in metalworking. However, when combined with nanofluids, it improves the ability of the aerosol to dissipate more heat and increase lubrication in the cutting zone. This paper presents the effect of a polyol ester-based Al2O3 nanofluid due to the varying mass concentration of nanoparticles on the vibration during turning of Ti6Al4V alloy and compares the results with dry cutting and the MQL method without nanoparticles. Four concentrations (0.25−1 wt%), variable nanofluid flow rate E = 0.388−1.182 g/min and air flow rate P = 10−40 l/min were considered. According to the statistical analysis, the most important factor influencing tool vibration was the mass concentration of nanoparticles in the cutting fluid. By combining the MQL method with 0.5 wt% Al2O3, the vibration acceleration RMS values were found to be the lowest. When compared to the MQL method without nanoparticles, the RMS values for dry cutting ranged from 17.8% to 24.9%, and for wet cutting they were reduced by about 10.9-18.5%.

Publisher

University of Zielona Góra, Poland

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3