Automating taxonomic and systematic search of benthic foraminifera in an online database

Author:

Amao Abduljamiu O.

Abstract

Recent advances in the applications of deep neural networks in computer vision tasks such as image classification has seen a tremendous surge in interest. Several image classification algorithms can now be leveraged in automating some tedious tasks associated with benthic foraminifera research especially in sample picking, taxonomy and systematics. In this study, a small image identification model was built with 414 SEM micrographs representing twenty-one species of benthic foraminifera, using a convolutional neural network which achieved 84% model accuracy and 75% validation accuracy on previously unseen images. The model was also deployed through a web application to demonstrate how it may be useful in augmenting online databases such as the Ellis Messina catalogue and the World Register of Marine Species. These services although very valuable, can be modernized with image search functionalities to enhance their perpetual usefulness and continuity.

Publisher

Micropaleontological Foundation MicroPress Europe

Subject

Paleontology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3