Abrupt Quaternary Ocean-ice Events in the Arctic: Evidence from the Ostracode Rabilimis

Author:

Cronin Thomas M.,Gemery Laura,Olds Baylee M.,Regnier Alexa M.,Poirier Robert K.,Sui Sienna

Abstract

The Arctic Ocean has experienced orbital and millennial-scale climate oscillations over the last 500 kilo-annum (ka) involving massive changes in global sea level and components of the Arctic cryosphere, including sea-ice cover, land-based ice sheets and ice shelves. Although these climate events are only partially understood, micropaleontological studies utilizing ostracodes and benthic foraminifera have demonstrated that major changes in faunas have occurred at different timescales that signify ecosystem regime changes linked to sea-ice cover, surface productivity, bottom temperature and other factors. In addition to faunal changes characterizing glacial-interglacial cycles, Arctic sediments contain several unusual faunal events that cannot be explained by orbital-scale sea level and cryospheric changes. One indicator of such events involves the ostracode Rabilimis mirabilis (Brady 1868), a shallow-water species that inhabits continental shelves in the modern Arctic. We conducted studies of the stratigraphic distribution of R. mirabilis in cores from the Northwind, Mendeleev, Lomonosov, and Alpha Ridges; the Siberian and North American (Beaufort Sea) continental margins; and the Lincoln Sea off North Greenland and in the northern Greenland Sherard Osborn Fjord. Evidence from these records suggests that this species occurs as a fossil in deeper water sediment cores on the upper parts of submarine ridges (mainly 700-900 meters water depth, mwd), in significant numbers (from 1%to 50% of total ostracodes) during Marine Isotope Stages (MIS) 5a (125-109 ka), MIS 4 (71-57 ka), and MIS 3 (57-29 ka). Furthermore, it occurs in cores from various depths on the Siberian margin, the Beaufort and Lincoln Seas during MIS 1 (the Holocene, approx. 11-0 ka). These occurrences involve well-preserved, stratigraphically consistent adult and juvenile populations, which are autochthonous in nature and not caused by downslope transport or ice rafting. Based on their age and associated paleoceanographic conditions in the Arctic, we interpret these R. mirabilis events as signifying basin-ward migration during abrupt changes in growth and decay of massive ice shelves and may be useful as biostratigraphic markers.

Publisher

Micropaleontological Foundation MicroPress Europe

Subject

Paleontology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3