Predicting the outcomes of a single endoscopic correction of vesicoureteral reflux using a dextranomer/hyaluronic acid copolymer: selection of the optimal predictive model

Author:

Dubrov V. I.1ORCID,Sizonov V. V.2ORCID,Kagantsov I. M.3ORCID,Negmatova K. N.4ORCID,Bondarenko S. G.5ORCID

Affiliation:

1. Minsk 2nd City Children's Clinical Hospital

2. Rostov-on-Don Regional Children's Clinical Hospital

3. V.A. Almazov National Medical Research Center; Pitirim Sorokin Syktyvkar State University

4. Pitirim Sorokin Syktyvkar State University

5. Volgograd Emergency Clinical Hospital No. 7

Abstract

Introduction. Endoscopic dextranomer/hyaluronic acid copolymer (DxHA) injection is the most commonly used minimally invasive method of surgical treatment of vesicoureteral reflux (VUR) in children.Purpose of the study. To estimate the accuracy of logistic prognostic models and artificial neural network for prediction a single endoscopic injection DxHA in VUR.Materials and methods. We used endoscopic DxHA in 582 patients (783 ureteric units) of all grades reflux (I - 20, II - 133, III - 443, IV - 187), 53 ureters had complete duplication. A total effectiveness of surgery was 53.2%. A binary logistic regression model and an artificial neural network (multilayer perceptron) were created, taking the following as independent variables: grade of reflux, the patient's age and sex, the ureteral duplication and ureteral dilatation index.Results. The univariate logistic regression showed that the selected predictors were strongly related to the outcome of the treatment. Binary logistic regression and neural network developed high accuracy of the predictions, area under ROC-curve was 0,7 for logistic regression model (a sensitivity of 70.7%, and a specificity of 66.3%) and 0.74 for artificial neural network (a sensitivity of 85.5%, a specificity of 65.3%). Synaptic neural network weights and logistic regression parameters were used in a scoring model to predict the outcome of a single endoscopic injection of DxHA in 2 independent hospitals. An outcomes analysis using predictive models in independent clinics showed a good quality of prediction both with the use of logistic regression (75% and 90% of the correct prognosis) and using a neural network (89.7% and 77% of the correct prediction).Conclusion. An artificial neural network and a binary logistic regression model are an effective tool to assist urologists in identifying and applying endoscopic treatments for VUR in children.

Publisher

Rostov State Medical University

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3