Effect of Grafting Nano-TiO2 on Sansevieria cylindrica Fiber Properties

Author:

Wiguna Chrisrulita Sekaradi,Suryanto Heru,Aminnudin Aminnudin,Binoj Joseph Selvi,Ali Alamry

Abstract

Natural fibers, which are abundant, environmentally friendly, and biodegradable, are used as a replacement for synthetic fibers. The composite strength can be increased by treating the surfaces of natural fibers with suitable chemicals, which can also improve the interface interaction between fiber and matrix. Application of a coupling agent in chemical treatment is utilized to reinforce the bonding between fiber and matrix. The objective of the study is to determine the influence of silane concentration on the Sansevieria cylindrica fiber properties. The methods included fibers treatment using ethanol and coupling agent as dissolving and TiO2 with concentrations of 0 percent, 0.25 percent, 0.5 percent, 0.75 percent, and 1 percent. The mechanical strength testing was conducted through a single fiber test. Fiber morphology was observed using an electron microscope. FTIR analyzes the change in fiber chemical composition caused by TiO2 addition. As a result, the morphology of S. cylindrica fibers became rougher and showed a rougher surface after a silane concentration of 1 percent, but with the proper concentration, some fiber surfaces provided a good interface. Ti-O bonds are formed at a wavelength of 475 cm-1. The shift in a peak at 400–500 cm-1 indicates Ti-O-Ti group stretching vibrations believed to have originated from TiO2 particles. The mechanical strength increases as the concentration of TiO2 increases, with the highest fiber strength of 284.66 MPa observed at a TiO2 concentration of 1 percent. This represents a 26 percent higher tensile strength compared to the control specimen.

Publisher

State University of Malang (UM)

Subject

General Health Professions

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3