Detection of surface defects in welded joints during visual inspections using machine vision methods

Author:

,Yemelyanova M.G.,Smailova S.S., ,Baklanova O.E.,

Abstract

We discuss a problem of automatic defect detection in welded joints of stainless steel pipes in the production process. Possible defects that occur during tungsten inert gas welding are shown. The substantiation of the choice of the method for solving the problem based on modeling and background subtraction is given. An algorithm for defect detection in welded joints on frames of video sequences is proposed, taking into account the features of a specific area. The background models are built using the methods of averaging and a mixture of Gaussians. Experimental studies of the algorithm are carried out using examples of processing frames of video sequences received from a static camera. The obtained results confirm that the background modeling method based on frame averaging is suitable for the automatic detection of welding defects since the defects are different and have characteristic features. The proposed algorithm makes it possible to detect and highlight the defective area in a welded joint on frames of video sequences. The experimental results show that the algorithm satisfies the requirements for continuous rapid detection of surface defects.

Publisher

Samara National Research University

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AI-Assisted CO2 Corrosion Forecasting Method for Pipeline Integrity Monitoring System;2024 X International Conference on Information Technology and Nanotechnology (ITNT);2024-05-20

2. Modeling of a Digital Twin of an Automated Production Process;2024 International Russian Smart Industry Conference (SmartIndustryCon);2024-03-25

3. Target recognition and detection system based on sensor and nonlinear machine vision fusion;Nonlinear Engineering;2023-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3