The basic assembly of skeletal models in the fall detection problem

Author:

Seredin O.S., ,Kopylov A.V.,Surkov E.E.,Huang S.-C., , ,

Abstract

The paper considers the appliance of the featureless approach to the human activity recognition problem, which exclude the direct anthropomorphic and visual characteristics of human figure from further analysis and thus increase the privacy of the monitoring system. A generalized pairwise comparison function of two human skeletal models, invariant to the sensor type, is used to project the object of interest to the secondary feature space, formed by the basic assembly of skeletons. A sequence of such projections in time forms an activity map, which allows an application of deep learning methods based on convolution neural networks for activity recognition. The proper ordering of skeletal models in a basic assembly plays an important role in secondary space design. The study of ordering of the basic assembly by the shortest unclosed path algorithm and correspondent activity maps for video streams from the TST Fall Detection v2 database are presented.

Publisher

Samara National Research University

Subject

Electrical and Electronic Engineering,Computer Science Applications,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Locally Optimal Solutions in the Shortest Unclosed Path Search Problem;2023 IEEE Ural-Siberian Conference on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT);2023-05-15

2. Development of the structure of a robotic complex for the rehabilitation of a patient with amputation of the lower limbs;2023 IX International Conference on Information Technology and Nanotechnology (ITNT);2023-04-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3