Author:
Liang T.J., ,Pan W.G.,Bao H.,Pan F., , , , , , ,
Abstract
In recent years, vision-based object detection has made great progress across different fields. For instance, in the field of automobile manufacturing, welding detection is a key step of weld inspection in wheel production. The automatic detection and positioning of welded parts on wheels can improve the efficiency of wheel hub production. At present, there are few deep learning based methods to detect vehicle wheel welds. In this paper, a method based on YOLO v4 algorithm is proposed to detect vehicle wheel welds. The main contributions of the proposed method are the use of k-means to optimize anchor box size, a Distance-IoU loss to optimize the loss function of YOLO v4, and non-maximum suppression using Distance-IoU to eliminate redundant candidate bounding boxes. These steps improve detection accuracy. The experiments show that the improved methods can achieve high accuracy in vehicle wheel weld detection (4.92 % points higher than the baseline model with respect to AP75 and 2.75 % points higher with respect to AP50). We also evaluated the proposed method on the public KITTI dataset. The detection results show the improved method’s effectiveness.
Funder
National Natural Science Foundation of China
Publisher
Samara National Research University
Subject
Electrical and Electronic Engineering,Computer Science Applications,Atomic and Molecular Physics, and Optics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献