The methodology for obtaining nonlinear and continuous three-dimensional topographic data using inertial and optical measuring instruments of unmanned ground systems

Author:

Musa P., ,Purwanto I.,Christie D.A.,Wibowo E.P.,Irawan R., , , ,

Abstract

Topography is the study of an area on the earth's surface. This term relates to the land's slope or contour, which is the interval of elevation differences between two adjacent and parallel contour lines. Topography generally presents a three-dimensional model of object surface relief and an identification of land or hilly areas based on horizontal coordinates such as latitude and longitude, and vertical position, namely elevation. The topography is essential information that must be provided in the execution of building or road construction based on the ground contour. The problem which is the ground contour which can provide visualization topography as a three-dimensional (3D) condition of the ground contour is not normal (non-linear). Another problem is that the traditional measurement techniques with wheel rotation only measure distances and cannot represent the trajectory of the ground contour in 3D. The proposed in-depth evaluation of orientation estimation results in the topography accuracy level. This methodology consists of several processes; Inertia and orientation of an object, Distance measurement, Terrestrial topocentric – Euclidean transformation, and Topography visualization. This research designed a prototype and proposed a new visualization method of the ground contours to reconstruct a topography map between three algorithms; Direct Cosine Matrix-3D Coordinate, Madgwick-3D Coordinate, and Complementary Filter. The methodology was tested and evaluated intensively by direct observation at three measurement locations with different difficulty levels. As a result, the Direct Cosine Matrix-3D Coordinate is able to visualize the ground contours by reconstructing a topography map much better than other methods.

Publisher

Samara National Research University

Subject

Electrical and Electronic Engineering,Computer Science Applications,Atomic and Molecular Physics, and Optics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Global Refinement Algorithm to 3D Scene Reconstruction;2024 X International Conference on Information Technology and Nanotechnology (ITNT);2024-05-20

2. Neural Network for Point Clouds Registration Based on Soft Matching;2024 X International Conference on Information Technology and Nanotechnology (ITNT);2024-05-20

3. Satellite image recognition using ensemble neural networks and difference gradient positive-negative momentum;Chaos, Solitons & Fractals;2024-02

4. Visualizing Attitudinal Dynamics of Moving Objects via Android: Capturing Pitch, Roll, and Yaw Parameters;2023 Eighth International Conference on Informatics and Computing (ICIC);2023-12-08

5. Coplanarity-Based Approach for Camera Motion Estimation Invariant to the Scene Depth;Optical Memory and Neural Networks;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3