Affiliation:
1. Moscow Aviation Institute (National Research University), 121552, Moscow, Russia, Orshanskaya 3
Abstract
Nowadays deep neural networks play a significant part in various fields of human activity. Especially they benefit spheres dealing with large amounts of data and lengthy operations on obtaining and processing information from the visual environment. This article deals with the development of a convolutional neural network based on the YOLO architecture, intended for real-time book recognition. The creation of an original data set and the training of the deep neural network are described. The structure of the neural network obtained is presented and the most frequently used metrics for estimating the quality of the network performance are considered. A brief review of the existing types of neural network architectures is also made. YOLO architecture possesses a number of advantages that allow it to successfully compete with other models and make it the most suitable variant for creating an object detection network since it enables some of the common disadvantages of such networks to be significantly mitigated (such as recognition of similarly looking, same-color book coves or slanted books). The results obtained in the course of training the deep neural network allow us to use it as a basis for the development of the software for book spine recognition.
Publisher
Samara State National Research University
Subject
Electrical and Electronic Engineering,Computer Science Applications,Atomic and Molecular Physics, and Optics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献