Numerical analysis of the functional properties of the 3D resonator of a plasmon nanolaser with regard to nonlocality and prism presence via the Discrete Sources method
Author:
Eremin Yu.A.1,
Lopushenko V.V.1
Affiliation:
1. Lomonosov Moscow State University, 119991, Moscow, Russia, Leninskie Gory 1, bld 52
Abstract
The influence of the nonlocality effect on the optical characteristics of the near field of a plasmonic nanolaser resonator is considered. A computer model based on the Discrete Sources method has been developed for the analysis of the near-field characteristics of a layered nanoparticle located on a transparent substrate in an active medium. In this case, the nonlocality of the plasmon metal is taken into account within the framework of a Generalized Nonlocal Optical Response model. Excitation of a particle by both propagating and evanescent waves is investigated. "Optimal" directions of external excitation have been established. It is found that excitation by an evanescent wave leads to a higher intensity of the near field. It is demonstrated that accounting for the nonlocal effect in the plasmonic metal significantly reduces the field amplification factor.
Publisher
Samara State National Research University
Subject
Electrical and Electronic Engineering,Computer Science Applications,Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献