Computational and experimental studies on SnO2 thin films at various temperatures

Author:

,Gurushankar K., ,Grishina M., ,Gohulkumar M., ,Kannan K.,

Abstract

Tin oxide (SnO2) thin films was prepared by dip-coating technique at various bath temperatures (313, 333, 353 and 373 K) and annealed at 673 K in this study. And the obtained results were studied and correlated with the computational method. Scanning electron microscopy (SEM) investigation demonstrated that the prepared samples are spherical with agglomeration. The elemental analysis (EDAX) confirms the presence of Sn and O. Further, the SnO2 thin films microstructures are simulated, their thermodynamic and surface properties have been calculated. Micro-Raman spectra were recorded for the prepared samples. Micro-Raman results exhibit the first-order Raman mode E1gsub> (475 cm−1) indicating that the grown SnO2 belongs to the rutile structure. In addition, the envelope method used for studying optical characteristics of the thin films from the transmittance spectra. The semiconducting nature of the films has been noticed from linear I-V characteristics. Furthermore, the electrical conductivity studies suggest that the highest conductivity samples acquire the lowest activation energy and their values are also in the semiconducting range.

Publisher

Samara National Research University

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3