Application of generative adversarial neural networks for the formation of databases in scanning tunneling microscopy

Author:

Shelkovnikova T.E., ,Egorov S.F.,Gulyaev P.V., ,

Abstract

We discuss the development of a technique for automatic generation of databases of images obtained with a scanning tunneling microscope. An analysis of state-of-the-art methods and means of automatic processing of images obtained from probe and electron microscopes is carried out. We proposed using generative-adversarial networks for generating images taken with a scanning tunneling microscope to form training databases of images. A process of training and comparison of deep convolutional generative adversarial network (DCGAN) architectures using the OpenCV and Keras libraries together with TensorFlow is described, with the best of them identified by computing the metrics IS, FID, and KID. The scaling of images obtained from DCGAN is performed using a method of fine tuning of a super-resolution generative adversarial neural network (SRGAN) and bilinear interpolation based on the Python programming language. An analysis of calculated quantitative metrics values shows that the best results of image generation are obtained using DCGAN96 and SRGAN. It is found that FID and KID metric values for SRGAN method are better than values for bilinear interpolation in all cases except for DCGAN32. All calculations are performed on a GTX GeForce 1070 video card. A method for automatic generation of a scanning tunneling microscope image database based on the stepwise application of DCGAN and SRGAN is developed. Results of generation and comparison of the original image, the one obtained with DCGAN96 and the enlarged image with SRGAN are presented.

Publisher

Samara National Research University

Subject

Electrical and Electronic Engineering,Computer Science Applications,Atomic and Molecular Physics, and Optics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Using Generative Models to Improve Fire Detection Efficiency;2024 X International Conference on Information Technology and Nanotechnology (ITNT);2024-05-20

2. SAIGAN: arbitrary length and out-of-vocabulary handwriting synthesis preserving geometrical annotation;Sixteenth International Conference on Machine Vision (ICMV 2023);2024-04-03

3. Neural Network Style Transfer of Defects from Concrete to Metal to Improve Monitoring Efficiency;2024 26th International Conference on Digital Signal Processing and its Applications (DSPA);2024-03-27

4. Building surface damage recognition based on synthetic data;2023 IX International Conference on Information Technology and Nanotechnology (ITNT);2023-04-17

5. Technique of the identification, quantification and measurement of carbon short-fibers in SEM images using the instance segmentation;2023 IX International Conference on Information Technology and Nanotechnology (ITNT);2023-04-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3