Affiliation:
1. Omsk State Technical University, Mira, h. 11 Omsk, Russian Federation, 644050
Abstract
An abstract model of an artificial immune network (AIS) based on a classifier committee and robust learning algorithms (with and without a teacher) for classification problems, which are characterized by small volumes and low representativeness of training samples, are proposed. Evaluation of the effectiveness of the model and algorithms is carried out by the example of the authentication task using keyboard handwriting using 3 databases of biometric metrics. The AIS developed possesses emergence, memory, double plasticity, and stability of learning. Experiments have shown that AIS gives a smaller or comparable percentage of errors with a much smaller training sample than neural networks with certain architectures.
Funder
Russian Foundation for Basic Research
Publisher
Samara State National Research University
Subject
Electrical and Electronic Engineering,Computer Science Applications,Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献