An abstract model of an artificial immune network based on a classifier committee for biometric pattern recognition by the example of keystroke dynamics

Author:

Sulavko A.E.1

Affiliation:

1. Omsk State Technical University, Mira, h. 11 Omsk, Russian Federation, 644050

Abstract

An abstract model of an artificial immune network (AIS) based on a classifier committee and robust learning algorithms (with and without a teacher) for classification problems, which are characterized by small volumes and low representativeness of training samples, are proposed. Evaluation of the effectiveness of the model and algorithms is carried out by the example of the authentication task using keyboard handwriting using 3 databases of biometric metrics. The AIS developed possesses emergence, memory, double plasticity, and stability of learning. Experiments have shown that AIS gives a smaller or comparable percentage of errors with a much smaller training sample than neural networks with certain architectures.

Funder

Russian Foundation for Basic Research

Publisher

Samara State National Research University

Subject

Electrical and Electronic Engineering,Computer Science Applications,Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of Ear Canal Echograms for Personality Verification Using AIConstructor Software Package;2023 International Conference on Modeling, Simulation & Intelligent Computing (MoSICom);2023-12-07

2. Classification of Borrowers Using an Immune Model of Artificial Intelligence in Credit Scoring Tasks;2023 IEEE XVI International Scientific and Technical Conference Actual Problems of Electronic Instrument Engineering (APEIE);2023-11-10

3. Investigation of the Training Data Set Influence on the Accuracy of the Optical Laguerre-Gaussian Modes Recognition;Optical Memory and Neural Networks;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3