Affiliation:
1. IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS, 443001, Samara, Russia, Molodogvardeyskaya 151; Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34
Abstract
Using two identical microobjectives with a numerical aperture NA = 0.95, we experimentally demonstrate that the on-axis intensity near the tight focal spot of an optical vortex with a topological charge 2 is zero for right-handed circular polarization and nonzero for left-handed circular polarization. This serves to confirm that in the latter case there is a reverse energy flow on the optical axis, as testified by a very weak local maximum (the Arago spot) detected at the center of the measured energy flow distribution, caused by diffraction of the direct energy flow by a 300 nm circle (the diameter of a reverse energy flow tube). The comparison of numerical and experimental intensity distributions shows that it is possible to determine the diameter of the reverse energy flow "tube", which is equal to the distance between the adjacent intensity nulls. For NA = 0.95 and a 532 nm incident wavelength, the diameter of the on-axis reverse energy flow "tube" is measured to be 300 nm. It is also experimentally shown that when an optical beam with second-order cylindrical polarization is focused with a lens with NA = 0.95, there is a circularly symmetric energy flow in the focus with a very weak maximum in the center (the Arago spot), whose distribution is determined by diffraction of the direct energy flow by a 300 nm circular region, where the energy flow is reverse. This also confirms that in this case, there is a reverse energy flow on the optical axis.
Funder
Russian Science Foundation
Russian Foundation for Basic Research
Ministry of Science and Higher Education of the Russian Federation
Publisher
Samara State National Research University
Subject
Electrical and Electronic Engineering,Computer Science Applications,Atomic and Molecular Physics, and Optics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献