Evaluation of the change in synthetic aperture radar imaging using transfer learning and residual network

Author:

Hamdi I.1,Tounsi Y.2,Benjelloun M.3,Nassim A.2

Affiliation:

1. Laboratory of Physics of Nuclear, Atomic and Molecular Techniques, Chouaib Doukkali University, faculty of sciences, B,P. 20, El Jadida, Morocco; Measurment and Control Instrumentation Laboratory IMC, department of physics, Chouaib Doukkali University, faculty of sciences, B,P. 20, El Jadida, Morocco

2. Measurment and Control Instrumentation Laboratory IMC, department of physics, Chouaib Doukkali University, faculty of sciences, B,P. 20, El Jadida, Morocco

3. Laboratory of Physics of Nuclear, Atomic and Molecular Techniques, Chouaib Doukkali University, faculty of sciences, B,P. 20, El Jadida, Morocco

Abstract

Change detection from synthetic aperture radar images becomes a key technique to detect change area related to some phenomenon as flood and deformation of the earth surface. This paper proposes a transfer learning and Residual Network with 18 layers (ResNet-18) architecture-based method for change detection from two synthetic aperture radar images. Before the application of the proposed technique, batch denoising using convolutional neural network is applied to the two input synthetic aperture radar image for speckle noise reduction. To validate the performance of the proposed method, three known synthetic aperture radar datasets (Ottawa; Mexican and for Taiwan Shimen datasets) are exploited in this paper. The use of these datasets is important because the ground truth is known, and this can be considered as the use of numerical simulation. The detected change image obtained by the proposed method is compared using two image metrics. The first metric is image quality index that measures the similarity ratio between the obtained image and the image of the ground truth, the second metrics is edge preservation index, it measures the performance of the method to preserve edges. Finally, the method is applied to determine the changed area using two Sentinel 1 B synthetic aperture radar images of Eddahbi dam situated in Morocco.

Publisher

Samara State National Research University

Subject

Electrical and Electronic Engineering,Computer Science Applications,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3