Nonparametric pattern recognition algorithm for testing a hypothesis of the independence of random variables

Author:

Zenkov I.V.1,Lapko A.V.2,Lapko V.A.2,Kiryushina E.V.3,Vokin V.N.3

Affiliation:

1. Siberian Federal University, 660041, Krasnoyarsk, Russia, Svobodny Av. 79; Reshetnev Siberian State University of Science and Technology, 660037, Krasnoyarsk, Russia, Krasnoyarsky Rabochy Av. 31

2. Institute of Computational Modelling SB RAS, 660036, Krasnoyarsk, Russia, Akademgorodok 50; Reshetnev Siberian State University of Science and Technology, 660037, Krasnoyarsk, Russia, Krasnoyarsky Rabochy Av. 31

3. Siberian Federal University, 660041, Krasnoyarsk, Russia, Svobodny Av. 79

Abstract

A new method for testing a hypothesis of the independence of multidimensional random variables is proposed. The technique under consideration is based on the use of a nonparametric pattern recognition algorithm that meets a maximum likelihood criterion. In contrast to the traditional formulation of the pattern recognition problem, there is no a priori training sample. The initial information is represented by statistical data, which are made up of the values of a multivariate random variable. The distribution laws of random variables in the classes are estimated according to the initial statistical data for the conditions of their dependence and independence. When selecting optimal bandwidths for nonparametric kernel-type probability density estimates, the minimum standard deviation is used as a criterion. Estimates of the probability of pattern recognition error in the classes are calculated. Based on the minimum value of the estimates of the probabilities of pattern recognition errors, a decision is made on the independence or dependence of the random variables. The technique developed is used in the spectral analysis of remote sensing data.

Funder

Russian Foundation for Basic Research

Publisher

Samara State National Research University

Subject

Electrical and Electronic Engineering,Computer Science Applications,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3