Time-optimal algorithms focused on the search for random pulsed-point sources

Author:

Reznik A.L.1,Tuzikov A.V.2,Soloviev A.A.1,Torgov A.V.1,Kovalev V.A.2

Affiliation:

1. Institute of Automation and Electrometry of the Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia, Academician Koptyug ave. 1

2. United Institute of Informatics Problems of the National Academy of Sciences of Belarus, 220012, Belarus, Minsk, Surganova st., 6

Abstract

The article describes methods and algorithms related to the analysis of dynamically changing discrete random fields. Time-optimal strategies for the localization of pulsed-point sources having a random spatial distribution and indicating themselves by generating instant delta pulses at random times are proposed. An optimal strategy is a procedure that has a minimum (statistically) average localization time. The search is performed in accordance with the requirements for localization accuracy and is carried out by a system with one or several receiving devices. Along with the predetermined accuracy of localization of a random pulsed-point source, a significant complicating factor of the formulated problem is that the choice of the optimal search procedure is not limited to one-step algorithms that end at the moment of first pulse generation. Moreover, the article shows that even with relatively low requirements for localization accuracy, the time-optimal procedure consists of several steps, and the transition from one step to another occurs at the time of registration of the next pulse by the receiving system. In this case, the situation is acceptable when during the process of optimal search some of the generated pulses are not fixed by the receiving system. The parameters of the optimal search depending on the number of receiving devices and the required accuracy of localization are calculated and described in the paper.

Funder

Российский Фонд Фундаментальных Исследований

Ministry of Education and Science of the Russian Federation

Publisher

Samara State National Research University

Subject

Electrical and Electronic Engineering,Computer Science Applications,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3