Shaping and processing the vortex spectra of singular beams with anomalous orbital angular momentum

Author:

Volyar A.V.1,Bretsko M.V.1,Akimova Ya.E.1,Egorov Yu.A.1

Affiliation:

1. Physics and Technology Institute of V.I. Vernadsky Crimean Federal University

Abstract

The article examines physical mechanisms responsible for shaping the vortex avalanche induced by a weak perturbation of the holographic lattice of a combined vortex beam. For this, we have developed a new technique for measuring the degenerate spectra of optical vortices and orbital angular momentum of combined singular beams. The technique is based on measuring the intensity moments of higher orders of a beam containing vortices with both positive and negative topological charges. The appropriate choice of the mode amplitudes in the combined beam enables us to form orbital angular momentum anomalous spectral regions in the form of resonance dips and bursts. Since the intensity moments of a vortex mode with positive and negative topological charges are the same (the moments are degenerate) for an axially symmetric beam, the measurements are carried out in the plane of the double focus of a cylindrical lens. The calibration measurements show that the experimental error is not higher than 4.5 %. We also reveal that the dips and bursts in the orbital angular momentum spectrum are caused by the vortex avalanche induced by weak perturbations of the holographic grating relief responsible for the beam shaping. The appearance of the orbital angular momentum dips or bursts is controlled by the relation between the energy fluxes in the vortex avalanche with positive or negative topological charges.

Funder

Российский Фонд Фундаментальных Исследований

Publisher

Samara State National Research University

Subject

Electrical and Electronic Engineering,Computer Science Applications,Atomic and Molecular Physics, and Optics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3