Application of the coupled classical oscillators model to the Fano resonance build-up in a plasmonic nanosystem

Author:

Golovinski P.A.1,Yakovets A.V.2,Khramov E.S.2

Affiliation:

1. Moscow Institute of Physics and Technology (State University), 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia; Voronezh State Technical University, 20 let Oktyabrya st., 84, Voronezh, 394006, Russia

2. Moscow Institute of Physics and Technology (State University), 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia

Abstract

We study the excitation dynamics of Fano resonance within the classical model framework of two linear coupled oscillators. An exact solution for the model with a damped harmonic force is obtained. Details of the growth of a Fano profile under the harmonic excitation are shown. For an incident ultra-wideband pulse, the reaction of the system becomes universal and coincides with the time-dependent response function. The results of numerical calculations clarify two alternative ways for the experimental measurement of complete characteristics of the system: via direct observation of the system response to a monochromatic force by frequency scanning or recording the time-dependent response to a d-pulse. As a specific example, the time-dependent excitation in a system consisting of a quantum dot and a metal nanoparticle is calculated. Then, we show the use of an extended model of damped oscillators with radiative correction to describe the plasmon Fano resonance build-up when a femtosecond laser pulse is scattered by a nanoantenna.

Funder

Ministry of Education and Science of the Russian Federation

Publisher

Samara State National Research University

Subject

Electrical and Electronic Engineering,Computer Science Applications,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3