Technology of intellectual feature selection for a system of automatic formation of a coagulate plan on retina

Author:

Ilyasova N.Yu.1,Shirokanev A.S.1,Kupriyanov A.V.1,Paringer R.A.1

Affiliation:

1. IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Samara National Research University

Abstract

The paper proposes a technology for effective feature selection to localize individual characteristics of anatomical and pathological structures in the human eye fundus. Such an approach allows the intellectual analysis of features to be conducted using color subspaces and the regions of interest to be identified. This problem is relevant because in this way the efficiency of laser coagulation surgery can be improved. The technology is based on the texture analysis of certain image patterns. The initial textural attributes are derived from different statistical image descriptors calculated using the MaZda library (image histogram, image gradient, series length and adjacency matrices). The analysis of the feature space informativity and selection of the most effective features are carried out using the discriminant data analysis. The best-size image fragmentation windows for eye fundus clustering and sets of features that provide the necessary accuracy in identifying the regions of interest were derived via analyzing the following four image classes: exudates, thick vessels, thin vessels, and healthy areas. The feature selection technology was based on clustering using a K-means method, with the Euclidean and Mahalanobis distance used as a similarity measure. The required minimum size of the fragmentation window and the similarity measure were chosen from a criterion of the minimum clustering error among all the smallest window sizes. The article also presents a system for automatically forming a coagulate plan, expected to be used to support the decision-making during laser retinal coagulation surgery in the treatment of diabetic macular edema. This system is currently being developed based on the proposed technology.

Funder

Russian Foundation for Basic Research

Publisher

Samara State National Research University

Subject

Electrical and Electronic Engineering,Computer Science Applications,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3