Focusing fractional-order cylindrical vector beams

Author:

Stafeev S.S.1,Zaitsev V.D.1

Affiliation:

1. IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS, 443001, Samara, Russia, Molodogvardeyskaya 151; Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

Abstract

By numerically simulating the sharp focusing of fractional-order vector beams (0≤m≤1, with azimuthal polarization at m=1 and linear polarization at m=0), it is shown that the shape of the intensity distribution in the focal spot changes from elliptical (m=0) to round (m=0.5) and ends up being annular (m=1). Meanwhile, the distribution pattern of the longitudinal component of the Poynting vector (energy flux) in the focal spot changes in a different way: from circular (m=0) to elliptical (m=0.5) and ends up being annular (m=1). The size of the focal spot at full width at half maximum of intensity for a first-order azimuthally polarized optical vortex (m=1) and numerical aperture NA=0.95 is found to be 0.46 of the incident wavelength, whereas the diameter of the on-axis energy flux for linearly polarized light (m=0) is 0.45 of the wavelength. Therefore, the answers to the questions: when the focal spot is round and when elliptical, or when the focal spot is minimal -- when focusing an azimuthally polarized vortex beam or a linearly polarized non-vortex beam, depend on whether we are considering the intensity at the focus or the energy flow. In another run of numerical simulation, we investigate the effect of the deviation of the beam order from m=2 (when an energy backflow is observed at the focal spot center). The reverse energy flow is shown to occur at the focal spot center until the beam order gets equal to m=1.55.

Funder

Russian Science Foundation

Ministry of Science and Higher Education of the Russian Federation

Publisher

Samara State National Research University

Subject

Electrical and Electronic Engineering,Computer Science Applications,Atomic and Molecular Physics, and Optics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3