Optimal affine image normalization approach for optical character recognition

Author:

Konovalenko I.A.1,Kokhan V.V.1,Nikolaev D.P.1

Affiliation:

1. Institute for Information Transmission Problems RAS, 127051, Moscow, Russia, Bolshoy Karetny per. 19, bld. 1; Smart Engines, 117312, Moscow, Russia, pr-t 60-letiya Oktyabrya, 9

Abstract

Optical character recognition (OCR) in images captured from arbitrary angles requires preliminary normalization, i.e. a geometric transformation resulting in an image as if it was captured at an angle suitable for OCR. In most cases, a surface containing characters can be considered flat, and a pinhole model can be adopted for a camera. Thus, in theory, the normalization should be projective. Usually, the camera optical axis is approximately perpendicular to the document surface, so the projective normalization can be replaced with an affine one without a significant loss of accuracy. An affine image transformation is performed significantly faster than a projective normalization, which is important for OCR on mobile devices. In this work, we propose a fast approach for image normalization. It utilizes an affine normalization instead of a projective one if there is no significant loss of accuracy. The approach is based on a proposed criterion for the normalization accuracy: root mean square (RMS) coordinate discrepancies over the region of interest (ROI). The problem of optimal affine normalization according to this criterion is considered. We have established that this unconstrained optimization is quadratic and can be reduced to a problem of fractional quadratic functions integration over the ROI. The latter was solved analytically in the case of OCR where the ROI consists of rectangles. The proposed approach is generalized for various cases when instead of the affine transform its special cases are used: scaling, translation, shearing, and their superposition, allowing the image normalization procedure to be further accelerated.

Funder

Russian Foundation for Basic Research

Publisher

Samara State National Research University

Subject

Electrical and Electronic Engineering,Computer Science Applications,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Accurate facial expression recognition method based on perceptual hash algorithm;International Journal of Biometrics;2024

2. Simulation Research on Large Language Model of Complex OCR Scene Based on Reinforcement Learning Algorithm Optimization;2023 International Conference on Internet of Things, Robotics and Distributed Computing (ICIRDC);2023-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3