Transformer point net: cost-efficient classification of on-road objects captured by light ranging sensors on low-resolution conditions

Author:

Pamplona J., ,Madrigal C.,Herrera-Ramirez J., ,

Abstract

The three-dimensional perception applications have been growing since Light Detection and Ranging devices have become more affordable. On those applications, the navigation and collision avoidance systems stand out for their importance in autonomous vehicles, which are drawing an appreciable amount of attention these days. The on-road object classification task on three-dimensional information is a solid base for an autonomous vehicle perception system, where the analysis of the captured information has some factors that make this task challenging. On these applications, objects are represented only on one side, its shapes are highly variable and occlusions are commonly presented. But the highest challenge comes with the low resolution, which leads to a significant performance dropping on classification methods. While most of the classification architectures tend to get bigger to obtain deeper features, we explore the opposite side contributing to the implementation of low-cost mobile platforms that could use low-resolution detection and ranging devices. In this paper, we propose an approach for on-road objects classification on extremely low-resolution conditions. It uses directly three-dimensional point clouds as sequences on a transformer-convolutional architecture that could be useful on embedded devices. Our proposal shows an accuracy that reaches the 89.74 % tested on objects represented with only 16 points extracted from the Waymo, Lyft's level 5 and Kitti datasets. It reaches a real time implementation (22 Hz) in a single core processor of 2.3 Ghz.

Publisher

Samara National Research University

Subject

Electrical and Electronic Engineering,Computer Science Applications,Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Global Refinement Algorithm to 3D Scene Reconstruction;2024 X International Conference on Information Technology and Nanotechnology (ITNT);2024-05-20

2. Neural Network for Point Clouds Registration Based on Soft Matching;2024 X International Conference on Information Technology and Nanotechnology (ITNT);2024-05-20

3. Efficiency of Adaptive Traffic Signal Control in a Partially Connected Vehicle Environment;2023 IX International Conference on Information Technology and Nanotechnology (ITNT);2023-04-17

4. Connected Vehicles Travel Time Prediction in a Scenario with Adaptive Traffic Light Control;2023 IX International Conference on Information Technology and Nanotechnology (ITNT);2023-04-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3