Astigmatic transformation of a fractional-order edge dislocation

Author:

Kotlyar V.V., ,Abramochkin E.G.,Kovalev A.A.,Nalimov A.G., , , , , ,

Abstract

It is shown theoretically that an astigmatic transformation of an edge dislocation (straight line of zero intensity) of the ν-th order (ν=n+α is a real positive number, n is integer, 0<α<1 is the fractional part of the number) forms at twice the focal length from a cylindrical lens n optical elliptical vortices (screw dislocations) with a topological charge of –1, located on a straight line perpendicular to the edge dislocation. Coordinates of these points are zeros of the Tricomi function. At some distance from these vortices and on the same straight line, another additional vortex with a topological charge of –1 is also generated, which moves to the periphery if α decreases to zero, or approaches n vortices if α tends to 1. In addition, at the periphery in the beam cross-section, a countable number of optical vortices (intensity zeros) are formed, all with a topological charge of –1, which are located on diverging curved lines (such as hyperbolas) equidistant from a straight line on which the main n intensity zeros are located. These "accompanying" vortices approach the center of the beam, following the additional "passenger" vortex, if 0<α<0.5, or move to the periphery, leaving the "passenger" next to the main vortices, if 0.5<α<1. At α=0 and α=1, the "accompanying" vortices are situated at infinity. The topological charge of the entire beam at fractional ν is infinite. The numerical simulation confirms theoretical predictions.

Funder

Russian Science Foundation

Ministry of Science and Higher Education of the Russian Federation

Publisher

Samara National Research University

Subject

Electrical and Electronic Engineering,Computer Science Applications,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Measuring Singularities of Vector Structured LG Beams and Stokes Vortices via Intensity Moments Technique;Optical Memory and Neural Networks;2023-11

2. Singular Beams Transmitted Gyroanisotropic Crystals;2023 IX International Conference on Information Technology and Nanotechnology (ITNT);2023-04-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3