Numerical methods of spectral analysis of multicomponent gas mixtures and human exhaled breath

Author:

Golyak I.S., ,Kareva E.R.,Fufurin I.L.,Anfimov D.R.,Scherbakova A.V.,Nebritova A.O.,Demkin P.P.,Morozov A.N., , , , , , ,

Abstract

In this paper, the application of machine learning and deep learning in the spectral analysis of multicomponent gas mixtures is considered. The experimental setup consists of a quantum cascade laser with a tuning range of 5.3–12.8 µm, a peak power of up to 150 mW, and an astigmatic Herriott gas cell with an optical path length of up to 76 m. Acetone, ethanol, methanol, and their mixtures are used as test substances. For the detection and clustering of substances, including molecular biomarkers, methods of machine learning, such as stochastic embedding of neighbors with a t-distribution, principal component analysis and classification methods, such as random forest, gradient boosting, and logistic regression, are proposed. A shallow convolutional neural network based on TensorFlow (Google) and Keras is used for the spectral analysis of gas mixtures. Model spectra of substances are used as a training sample, and model and experimental spectra are used as a test sample. It is shown that neural networks trained on model spectra (NIST database) can recognize substances in experimental gas mixtures. We propose using machine learning methods for clustering and classification of pure substances and gas mixtures and neural networks for the identification of gas mixture components. Using the experimental setup described, the experimentally obtained concentration limits are 80 ppb for acetone and 100–120 ppb for ethanol and methanol. The possibility of using the proposed methods for analyzing spectra of human exhaled air is shown, which is significant for biomedical applications.

Publisher

Samara National Research University

Subject

Electrical and Electronic Engineering,Computer Science Applications,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3