Automatic segmentation of intracytoplasmic sperm injection images

Author:

Kovalev V.Y., ,Shishkin A.G.,

Abstract

In this paper, a multiclass image semantic segmentation problem was solved. For analysis, images of the intracytoplasmic sperm injection process were used. For training the neural network, 656 frames were manually labelled. As a result, each pixel of the images was assigned to one of four classes: microinjector, suction micropipette, oolemma, background. An analysis of modern approaches was carried out and the best architecture, encoders, and hyperparameters of the neural network were selected experimentally: the convolutional neural network FPN (feature pyramid network) with the resnext101 encoder having a depth of 101 layers with 32 parallel separable convolutions. The developed neural network model has allowed obtaining the segmentation efficiency of IOU=0.96 at the algorithm speed of 15 frames per second.

Publisher

Samara National Research University

Subject

Electrical and Electronic Engineering,Computer Science Applications,Atomic and Molecular Physics, and Optics

Reference26 articles.

1. Murid J, Essam M. Intracytoplasmic sperm injection – factors affecting fertilization. In Book: Darwish AMM, ed. Enhancing success of assisted reproduction. Rijeka: IntechOpen; 2012: 117-144.

2. Hajiyavand AM, Saadat M, Abena A, Sadak F, Sun X. Effect of injection speed on oocyte deformation in ICSI. micromachines 2019; 10: 226.

3. Hafiz P, Nematollahi M, Boostani R, Jahromi BN. Predicting implantation outcome of in vitro fertilization and intracytoplasmic sperm injection using data mining techniques. Int J Fertil Steril 2017; 11(3): 184-190.

4. Mostaar A, Sattari MR, Hosseini S, Deevband MR. Use of artificial neural networks and PCA to predict results of infertility treatment in the ICSI method. J Biomed Phys Eng 2019; 9(6): 679-686.

5. Rubino P, Viganò P, Luddi A, Piomboni P. The ICSI procedure from past to future: a systematic review of the more controversial aspects. Hum Reprod Update 2015; 22(2): 194-227.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3